rgpycrumbs.surfaces.standard

Classes

FastTPS

Thin Plate Spline (TPS) surface implementation.

FastMatern

Matérn 5/2 surface implementation.

FastIMQ

Inverse Multi-Quadratic (IMQ) surface implementation.

Functions

negative_mll_tps(log_params, x, y)

_tps_solve(x, y, sm)

_tps_predict(x_query, x_obs, w, v)

_tps_var(x_query, x_obs, lhs_inv)

negative_mll_matern_std(log_params, x, y)

_matern_solve(x, y, sm, length_scale)

_matern_predict(x_query, x_obs, alpha, length_scale)

_matern_var(x_query, x_obs, K_inv, length_scale)

negative_mll_imq_std(log_params, x, y)

_imq_solve(x, y, sm, epsilon)

_imq_predict(x_query, x_obs, alpha, epsilon)

_imq_var(x_query, x_obs, K_inv, epsilon)

Module Contents

rgpycrumbs.surfaces.standard.negative_mll_tps(log_params, x, y)[source]
rgpycrumbs.surfaces.standard._tps_solve(x, y, sm)[source]
rgpycrumbs.surfaces.standard._tps_predict(x_query, x_obs, w, v)[source]
rgpycrumbs.surfaces.standard._tps_var(x_query, x_obs, lhs_inv)[source]
class rgpycrumbs.surfaces.standard.FastTPS(x_obs, y_obs, smoothing=0.001, optimize=True, **_kwargs)[source]

Thin Plate Spline (TPS) surface implementation. Includes a polynomial mean function and supports smoothing optimization.

x_obs[source]
y_obs[source]
y_mean[source]
__call__(x_query, chunk_size=500)[source]

Predict values at query points using chunking.

Args:

x_query: Query inputs (M, D). chunk_size: Processing batch size.

Returns:

jnp.ndarray: Predicted values (M,).

predict_var(x_query, chunk_size=500)[source]

Predict posterior variance at query points.

Args:

x_query: Query inputs (M, D). chunk_size: Processing batch size.

Returns:

jnp.ndarray: Predicted variances (M,).

rgpycrumbs.surfaces.standard.negative_mll_matern_std(log_params, x, y)[source]
rgpycrumbs.surfaces.standard._matern_solve(x, y, sm, length_scale)[source]
rgpycrumbs.surfaces.standard._matern_predict(x_query, x_obs, alpha, length_scale)[source]
rgpycrumbs.surfaces.standard._matern_var(x_query, x_obs, K_inv, length_scale)[source]
class rgpycrumbs.surfaces.standard.FastMatern(x_obs, y_obs, smoothing=0.001, length_scale=None, optimize=True, **_kwargs)[source]

Bases: rgpycrumbs.surfaces._base.BaseSurface

Matérn 5/2 surface implementation.

_fit(smoothing, length_scale, optimize)[source]

Internal method to perform parameter optimization.

_solve()[source]

Internal method to solve the linear system for weights.

_predict_chunk(chunk)[source]

Internal method for batch prediction.

_var_chunk(chunk)[source]

Internal method for batch variance.

rgpycrumbs.surfaces.standard.negative_mll_imq_std(log_params, x, y)[source]
rgpycrumbs.surfaces.standard._imq_solve(x, y, sm, epsilon)[source]
rgpycrumbs.surfaces.standard._imq_predict(x_query, x_obs, alpha, epsilon)[source]
rgpycrumbs.surfaces.standard._imq_var(x_query, x_obs, K_inv, epsilon)[source]
class rgpycrumbs.surfaces.standard.FastIMQ(x_obs, y_obs, smoothing=0.001, length_scale=None, optimize=True, **_kwargs)[source]

Bases: rgpycrumbs.surfaces._base.BaseSurface

Inverse Multi-Quadratic (IMQ) surface implementation.

_fit(smoothing, length_scale, optimize)[source]

Internal method to perform parameter optimization.

_solve()[source]

Internal method to solve the linear system for weights.

_predict_chunk(chunk)[source]

Internal method for batch prediction.

_var_chunk(chunk)[source]

Internal method for batch variance.