rgpycrumbs.surfaces.gradient

Classes

GradientMatern

Gradient-enhanced Matérn 5/2 surface implementation.

GradientSE

Gradient-enhanced Squared Exponential (SE) surface implementation.

GradientIMQ

Gradient-enhanced Inverse Multi-Quadratic (IMQ) surface implementation.

GradientRQ

Symmetric Gradient-enhanced Rational Quadratic (RQ) surface implementation.

NystromGradientIMQ

Memory-efficient Nystrom-approximated gradient-enhanced IMQ surface.

Functions

negative_mll_matern_grad(log_params, x, y_flat, D_plus_1)

_grad_matern_solve(x, y_full, noise_scalar, length_scale)

_grad_matern_predict(x_query, x_obs, alpha, length_scale)

_grad_matern_var(x_query, x_obs, K_inv, length_scale)

negative_mll_se_grad(log_params, x, y_flat, D_plus_1)

_grad_se_solve(x, y_full, noise_scalar, length_scale)

_grad_se_predict(x_query, x_obs, alpha, length_scale)

_grad_se_var(x_query, x_obs, K_inv, length_scale)

negative_mll_imq_grad(log_params, x, y_flat, D_plus_1)

negative_mll_imq_map(log_params, init_eps, x, y_flat, ...)

_grad_imq_solve(x, y_full, noise_scalar, epsilon)

_grad_imq_predict(x_query, x_obs, alpha, epsilon)

_grad_imq_var(x_query, x_obs, K_inv, epsilon)

negative_mll_rq_map(log_params, x, y_flat, D_plus_1)

_grad_rq_solve(x, y_full, noise_scalar, params)

_grad_rq_predict(x_query, x_obs, alpha, params)

_grad_rq_var(x_query, x_obs, K_inv, params)

_stable_nystrom_grad_imq_solve(x, y_full, x_inducing, ...)

_nystrom_grad_imq_predict(x_query, x_inducing, ...)

_nystrom_grad_imq_var(x_query, x_inducing, W, epsilon)

Module Contents

rgpycrumbs.surfaces.gradient.negative_mll_matern_grad(log_params, x, y_flat, D_plus_1)[source]
rgpycrumbs.surfaces.gradient._grad_matern_solve(x, y_full, noise_scalar, length_scale)[source]
rgpycrumbs.surfaces.gradient._grad_matern_predict(x_query, x_obs, alpha, length_scale)[source]
rgpycrumbs.surfaces.gradient._grad_matern_var(x_query, x_obs, K_inv, length_scale)[source]
class rgpycrumbs.surfaces.gradient.GradientMatern(x, y, gradients=None, smoothing=0.0001, length_scale=None, optimize=True, **_kwargs)[source]

Bases: rgpycrumbs.surfaces._base.BaseGradientSurface

Gradient-enhanced Matérn 5/2 surface implementation.

_fit(smoothing, length_scale, optimize)[source]

Internal method to perform parameter optimization.

_solve()[source]

Internal method to solve the linear system for weights.

_predict_chunk(chunk)[source]

Internal method for batch prediction.

_var_chunk(chunk)[source]

Internal method for batch variance.

rgpycrumbs.surfaces.gradient.negative_mll_se_grad(log_params, x, y_flat, D_plus_1)[source]
rgpycrumbs.surfaces.gradient._grad_se_solve(x, y_full, noise_scalar, length_scale)[source]
rgpycrumbs.surfaces.gradient._grad_se_predict(x_query, x_obs, alpha, length_scale)[source]
rgpycrumbs.surfaces.gradient._grad_se_var(x_query, x_obs, K_inv, length_scale)[source]
class rgpycrumbs.surfaces.gradient.GradientSE(x, y, gradients=None, smoothing=0.0001, length_scale=None, optimize=True, **_kwargs)[source]

Bases: rgpycrumbs.surfaces._base.BaseGradientSurface

Gradient-enhanced Squared Exponential (SE) surface implementation.

_fit(smoothing, length_scale, optimize)[source]

Internal method to perform parameter optimization.

_solve()[source]

Internal method to solve the linear system for weights.

_predict_chunk(chunk)[source]

Internal method for batch prediction.

_var_chunk(chunk)[source]

Internal method for batch variance.

rgpycrumbs.surfaces.gradient.negative_mll_imq_grad(log_params, x, y_flat, D_plus_1)[source]
rgpycrumbs.surfaces.gradient.negative_mll_imq_map(log_params, init_eps, x, y_flat, D_plus_1)[source]
rgpycrumbs.surfaces.gradient._grad_imq_solve(x, y_full, noise_scalar, epsilon)[source]
rgpycrumbs.surfaces.gradient._grad_imq_predict(x_query, x_obs, alpha, epsilon)[source]
rgpycrumbs.surfaces.gradient._grad_imq_var(x_query, x_obs, K_inv, epsilon)[source]
class rgpycrumbs.surfaces.gradient.GradientIMQ(x, y, gradients=None, smoothing=0.0001, length_scale=None, optimize=True, **_kwargs)[source]

Bases: rgpycrumbs.surfaces._base.BaseGradientSurface

Gradient-enhanced Inverse Multi-Quadratic (IMQ) surface implementation.

_fit(smoothing, length_scale, optimize)[source]

Internal method to perform parameter optimization.

_solve()[source]

Internal method to solve the linear system for weights.

_predict_chunk(chunk)[source]

Internal method for batch prediction.

_var_chunk(chunk)[source]

Internal method for batch variance.

rgpycrumbs.surfaces.gradient.negative_mll_rq_map(log_params, x, y_flat, D_plus_1)[source]
rgpycrumbs.surfaces.gradient._grad_rq_solve(x, y_full, noise_scalar, params)[source]
rgpycrumbs.surfaces.gradient._grad_rq_predict(x_query, x_obs, alpha, params)[source]
rgpycrumbs.surfaces.gradient._grad_rq_var(x_query, x_obs, K_inv, params)[source]
class rgpycrumbs.surfaces.gradient.GradientRQ(x, y, gradients=None, smoothing=0.0001, length_scale=None, optimize=True, **_kwargs)[source]

Bases: rgpycrumbs.surfaces._base.BaseGradientSurface

Symmetric Gradient-enhanced Rational Quadratic (RQ) surface implementation.

_fit(_smoothing, length_scale, optimize)[source]

Internal method to perform parameter optimization.

_solve()[source]

Internal method to solve the linear system for weights.

_predict_chunk(chunk)[source]

Internal method for batch prediction.

_var_chunk(chunk)[source]

Internal method for batch variance.

rgpycrumbs.surfaces.gradient._stable_nystrom_grad_imq_solve(x, y_full, x_inducing, noise_scalar, epsilon)[source]
rgpycrumbs.surfaces.gradient._nystrom_grad_imq_predict(x_query, x_inducing, alpha_m, epsilon)[source]
rgpycrumbs.surfaces.gradient._nystrom_grad_imq_var(x_query, x_inducing, W, epsilon)[source]
class rgpycrumbs.surfaces.gradient.NystromGradientIMQ(x, y, gradients=None, n_inducing=300, nimags=None, smoothing=0.001, length_scale=None, optimize=True, **kwargs)[source]

Bases: rgpycrumbs.surfaces._base.BaseGradientSurface

Memory-efficient Nystrom-approximated gradient-enhanced IMQ surface.

n_inducing = 300[source]
nimags = None[source]
_fit(smoothing, length_scale, _optimize)[source]

Internal method to perform parameter optimization.

_solve()[source]

Internal method to solve the linear system for weights.

_predict_chunk(chunk)[source]

Internal method for batch prediction.

_var_chunk(chunk)[source]

Internal method for batch variance.