rgpycrumbs.surfaces._base¶
Classes¶
Abstract base class for standard (non-gradient) surface models. |
|
Abstract base class for gradient-enhanced surface models. |
Functions¶
|
Retries Cholesky decomposition with increasing jitter if it fails. |
|
Calculates the negative Marginal Log-Likelihood (MLL). |
Module Contents¶
- rgpycrumbs.surfaces._base.safe_cholesky_solve(K, y, noise_scalar, jitter_steps=3)[source]¶
Retries Cholesky decomposition with increasing jitter if it fails.
- Args:
K: Covariance matrix. y: Observation vector. noise_scalar: Initial noise level. jitter_steps: Number of retry attempts with increasing jitter.
- Returns:
- tuple: (alpha, log_det) where alpha is the solution vector and
log_det is the log determinant of the jittered matrix.
- rgpycrumbs.surfaces._base.generic_negative_mll(K, y, noise_scalar)[source]¶
Calculates the negative Marginal Log-Likelihood (MLL).
- Args:
K: Covariance matrix. y: Observation vector. noise_scalar: Noise level for regularization.
- Returns:
float: The negative MLL value, or a high penalty if Cholesky fails.
- class rgpycrumbs.surfaces._base.BaseSurface(x_obs, y_obs, smoothing=0.001, length_scale=None, optimize=True, **_kwargs)[source]¶
Abstract base class for standard (non-gradient) surface models.
Derived classes must implement _fit, _solve, _predict_chunk, and _var_chunk.
- abstractmethod _fit(smoothing, length_scale, optimize)[source]¶
Internal method to perform parameter optimization.
- __call__(x_query, chunk_size=500)[source]¶
Predict values at query points.
- Args:
x_query: Query inputs (M, D). chunk_size: Number of points to process per batch to avoid OOM.
- Returns:
jnp.ndarray: Predicted values (M,).
- class rgpycrumbs.surfaces._base.BaseGradientSurface(x, y, gradients=None, smoothing=0.0001, length_scale=None, optimize=True, **_kwargs)[source]¶
Abstract base class for gradient-enhanced surface models.
Derived classes must implement _fit, _solve, _predict_chunk, and _var_chunk. These models incorporate both values and their gradients into the fit.
- abstractmethod _fit(smoothing, length_scale, optimize)[source]¶
Internal method to perform parameter optimization.
- __call__(x_query, chunk_size=500)[source]¶
Predict values at query points.
- Args:
x_query: Query inputs (M, D). chunk_size: Number of points to process per batch.
- Returns:
jnp.ndarray: Predicted values (M,).